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The average interference function (, 7h,t(AS)) of a powder sample containing perfect crystals at a reciprocal 
distance AS from the peak is evaluated both for the case of identical parallelepiped crystals and for a 
Gaussian sample [probability of thickness d along a given crystal direction = C~ exp (-C2d2)]. In the latter 
case (, 7hkt(AS) ) decreases as I/AS 2 for large AS, by analogy with the Bernoullian model IAilegra, Bassi & 
Meille (1978). Acta Cryst. A34, 652-655] although with a smaller amplitude, for a fixed integrated intensity 
and half-peak width. It is shown that the Gaussian interference function, or line profile, cannot be given by 
any real sample, at least if its crystals neither contain holes nor have concave surfaces. Number and weight 
probability distributions are calculated both for the Bernoullian and for the Gaussian crystal-size statistics. 
As expected from the calculated line profiles, the Bernoullian statistics correspond to a larger weight 
percentage of crystals smaller than the average. 

Introduction 

In a previous paper (Allegra, Bassi & Meille, 1978) it 
was shown that the diffraction line profiles of Ber- 
noullian polycrystalline samples of parallelepiped- 
shaped perfect crystals are represented by Cauchy, or 
Lorentzian, distributions, provided the average number 
of unit cells is larger than about 10 along each paral- 
lelepiped edge and neglecting the effects of crystal 
strains. In the present paper we will proceed along 
similar lines, i.e. we will obtain the diffraction lines of 
powder samples of parallelepiped perfect crystals 
obeying well-defined statistical distributions. The sub- 
ject may be divided into three different sections. First, 
the line profiles of a sample containing identical crystals 
will be evaluated, under the above-stated assumptions 
that the number of unit cells along each crystal edge is 
larger than 10 and that the particle strains are ignored. 
Second, the case of a sample with parallelepiped 
crystals obeying independent simple Gaussian dis- 
tributions along the three edges will be investigated, 
with the same assumptions. Third, the number and 
weight distributions of polycrystalline samples will be 
evaluated as a function of the volume of the crystals, 
for both the Bernoullian and the Gaussian cases. 

Mathematical treatment 

(a) The line profile for  a collection of  identical paral- 
lelepiped crystals 

The well-known expression for the intensity diffracted 
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by a parallelepiped crystal at the reciprocal coordinates 
(x*,y*,z*) is 

l(x*,y*,z*) = I F2(x*,y*,z*)l 
sin 2 ( ~rN l x*/a*) 

sin2(nx*/a *) 

sin 2 (ztN2Y*/b*) sin 2 (~zN 3 z*/c*) 
x (1) 

sin 2 (ny*/b*) sin 2 (rte*/c*) ' 

where the crystal edges are taken as parallel to the unit- 
cell axes (a,b,c), (N~ a,N2b,N~c) being the corresponding 
edge lengths. The reciprocal-ceU axes are (a*,b*,c*), 
and the corresponding reciprocal-vector components 
are (x*,y*,z*). We shall take N~,N2,N 3 to be at least 
of order 10, so that sin 2 (x + nzt) in the denominator of 
equation (1) may be approximately replaced by x 2 in 
those regions of reciprocal space where the intensity is 
appreciably different from zero. For the same reason 
we shall assume IF2(x*,y*,z*)l to have a constant 
value in the vicinity of a reciprocal-lattice point (h,k,l), 
with h = x*/a*; k = y*/b*, l = z*/c* (integers). With 
these assumptions, we shall obtain in the following the 
integrated interference function ~7 = I/IF21 around 
any reciprocal-lattice point (h,k,l) as a function of the 
reciprocal-vector difference AS = S - S(hkl),  where 
S = I S I = 2 sin 0/2. Analogously, Ax* = x* - ha*, 
y* = y* - kb*, Az* = z* - Ic*; for the above, together 
with AS, they will be treated as infinitesimal quantities. 

It was shown in a previous paper (Allegra, Bassi & 
Meille, 1978) that 

Ax* = A A S  - BAy* - CAz*, (2) 
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with 

A = So/q~; B = qE/ql ;  C = qa /q l ;  S O =-- S(h,k,l); 

ql = ha* + kb* cos 7* + lc* cos fl*; 

q2 = ha* cos y* + kb* + lc* cos (t*; 

q3 = ha* cos fl* + kb* cos a* + lc*, (2') 

tt*, fl* and y* being the reciprocal-cell angles. With the 
above substitution, the interference function may be 
written in terms of AS, Ay* and Az* 

l(x*,y*,z*) 
, 7° , t (AS,  A y*,Az *) = ~FE(h,kl)~ 

sinZl ZCNl(AAS - BAy* - CAz*)/a*l 

Izr(AAS- BAy*- CAz*)/a*l 2 
sin 2lzrNEAy*/b*] sin E[TrN3Az*/c*l 

x [zrdy,/b,12 [7rAz,/c,i 2 (3) 

We are interested in obtaining the integral of "7~kt 
over the sphere S = constant, which represents the 
value of the integral line profile versus S. This may also 
be regarded as the line profile of a collection of many 
disorderly oriented identical crystals, apart from a 
constant factor. Since ,7"°,t falls to zero very rapidly 
with increasing values of IAy*l and IAz*l, the sphere 
may be replaced by the plane normal to the S(hkl) 
vector; for the same reason, the integration along Ay* 
and Az* may be performed from -oo to +oo. Conse- 
quently, the integral is given by [Allegra et al., 1978, 
equations (10)and (15)1: 

, T h k t ( d S )  

+oo +oo 

= f J ,7°n,t(AS, Ay*,Az*). IAIR*dAy*dAz*,  (4) 
- - 0 0  - - 0 0  

where 

R* = V/(1 -- cos E ,l* -- cos 2 fl* -- cos 2 

+ 2 cos ,i* cos fl* cos y*). (4') 

Combining equations (3) and (4), we may write 

+oo sin 2 [u(X -- Y - Z)] 
• . 7 / h k t ( A S  ) =-- f l b ( U , V , w , X )  = K f f 

-oo (X - Y -  Z)  2 

sin 2 (v Y) sin E (wZ) 
x dYdZ,(5)  

yE Z 2 

7g 
- -  AAS;  
a *  

u = NI; 

where 

X - -  
7[ 

Y = - ~  BAy*; a* 

a* N2 a* N 3 
V = - - ~ ,  w - -  

b* IBI c* ICI 

1 (b* ¢*~ E 
I~ = ~ IAISCR* - ~ ]  

7t 
Z = - -  CAz*; 

(5') 

From equation (5) the following relationship may be 
derived 

1 0 3 q~ 
~(u,v ,w,X)  - 

K Ou Ov Ow 

_ _ f f s i n I E u ( X - Y - Z ) l  . sin (Ev Y) 

X - Y - Z  Y 
- - 0 0  

sin (EwZ) 
x d Y d Z ,  (6) 

Z 

which shows that ~, as a function o f  X, is the con- 
volution of three functions of the type (sin ax)/x .  The 
Fourier transform of ~u with respect to X is therefore 
the product of the three corresponding transforms. 
Each of these is a 'step' function extending from 
( - a )  to (+a) along the transformed axis, as may be 
seen in the following 

1 r+a 1 sin ax 
F ( x ) =  ~ [ e-UXdt - ; (7) 

d 7t X 
- - a  

+~o ,~+ 1 between ( - a )  and (+a) 
f ( t )  = f F ( x ) e  +itxdx= 

0 elsewhere. (7') - -OO 

According to the above, the Fourier transform of 
7s(X), say ~t(t), is a step function with the value zt 3 
between the extremes ( -Ek)  and (+Ek) (k being the 
smallest among u, v and w), zero otherwise. As a result 
of the antitransformation of qs(t) to ~u(X) we have: 

sin (2kX) 
7-'(u,v,w,X) = ~z E (8) 

X 

(k = smallest among u,v,w). 
With the help of equations (5) and (6) and assuming 

that k coincides with w, for example, the line-profile 
function is now readily obtained: 

U V w 

o o o 

sin2(wX) 
= zt 2 Kuv 

X E s s] 
So NINE sinE N3c--* q3 ] 

Iq31 c * V  ( z ~ S ° d S I 2  ' c* ~ ] 

where S o stands for S(hkl).  

(9) 

In the above, use has been made of the property that 
• vanishes if any among the (u,v,w) parameters has 
zero value• The last result in equation (9) is obtained 
after the substitutions given in equations (2') and (5') 
and remembering that V (volume of the unit cell) = 
l/(a* b* c* R*). Furthermore, the substitutions x* = 
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ha*, y* = kb*, z* = lc* have been performed. After 
multiplication by the same factor, the three parameters 
(u,v,w) may be expressed in an equivalent, more 
symmetrical form [see equations (2') and (5')]: 

NI N2 N3 ~ - - - ;  b - - - ;  ~ = ~  (lO) 
a* Iqll b* Iq2l c* Iq31 

With the above substitutions equation (9) reduces to 

NSo _ sin2(zffVSoAS) 
,~'hk~(AS)=--F.W- (zcCvSoZlS)~ , (11) 

where N = NIN2N3 is the total number of unit cells 
within the crystal. If either fi or z3 is smaller than ~b, it 
should appear in equation (I I) instead of ~. Conse- 
quently, the change of the line profiles in reciprocal 
space does not show any discontinuity [remember that 
u, b and ~b depend on h,k,l through equations (2')1. 
The most characteristic features of the line profile may 
be summarized as follows: 

height = lim ,;Yhk,(AS) = (IV) S(hkl) fv(hkl), Peak 
AS-*0 \ v /  

Full width at half peak height 

0.8858 
= WII2 hki = 

' S ( h k l ) .  ~v (hkl) 
+oo N 

Integral value = f ,Th,t(AS) dAS = - - .  (12) 
V 

- - 0 0  

We may now state the following general result: 
For an assemblage of identical crystals having any 
parallelepiped shape, provided only that each edge 
comprises more than about l0 unit cells, the integral 
interference function, or line profile, is expressed as 
A sinE(BAS)/(BAS) 2 for any reflection, although in 
general A and B have different values for different 
reflections. As expected, the full width at half height is 
inversely proportional to the peak height. As is 
intuitively reasonable, for given values of the reciprocal- 
space parameters, the B value is mostly influenced by 
the lowest among the three numbers (NI,N2,N3) 
characterizing the crystal size. In particular, upon com- 
parison of equation (1 l) with (1), it is easy to see that 
the effective (average) thickness of the crystal is given 
by ~bS o, i.e. it is dictated by the value of N 3 if rb _< (~,b). 
As could have been predicted, the line shape is identical 
for all the higher orders of one reflection (i.e. same 
ratios h/k, k/l). 

(b) The line profile for a polycrystalline sample obeying 
simple Gaussian statistics 

Let us suppose that the probability of existence 
P(N.N2,N a) of a parallelepiped crystal having edge 

lengths ( N~ a,N2b, N3c) is 

P( N,,N2,N3) = 8.B)'I n 3/2 exp (--a 2 N 2 -- f12 N 2 _ ),2 N2), 

(13) 

where the parameters (a,fl,7) are related to the average 
numbers ((NI) ,  (N2), (N3)) by the relation 

(N~)- -  l/(azW2); (similarly for (N2)and  (N3)). (14) 

The above expression represents the simplest 
Gaussian probability distribution, where it is assumed 
that the three probabilities along a, b and e are inde- 
pendent. It may be physically conceived as related 
to a mechanism of crystal growth where each crystal 
may increase or decrease in size along each direction 
in steps involving either gain or loss of one two- 
dimensional layer extending along the other two 
dimensions. The probabilities per unit time of both gain 
and loss are equal and independent of crystal size, 
although being different for the three directions. If all 
the crystals nucleate at the same time, the parameters 
(a,fl, y) are fully determined by the corresponding gain- 
or-loss probabilities as well as by the total time of 
growth. 

From equations (10), (l l) and (13), the average 
contribution to the interference function by the crystals 
with edge numbers comprised between {Ni} and 
IN i + dN i} is, assuming rb < (ti,b) and denoting as v 0 
the total number of crystals, 

d 3 (,7~3)I(AS)) = vo.P(N ~ N2,N3) 

× , ¢'hkt(AS) dN l dN2 dN3 

8 Vo " fl)' N I N E S  o - zp/_____5_.exp(_a2N2_fl2N2- y2N]) 
Vc*lq31 

sin 2 ( 7tN3 So/tS) 

× \c*lq31 dN 1 dN2dN 3. (15) 

7t S o AS 
c*lq31 

Since ~b < (u,v), we have from equations (10) 

a*lqll b*lq21 
N I>_N a - - H 1 ;  N 2 > N  a - - H 2 ,  (16) 

c*lq31 c*lq31 

and, considering {N i} as continuous variables, we may 
integrate equation (15) over both N~ and N 2 from H~ 
and H 2, respectively, to infinity, obtaining 

"fl zP/----~ exp 2v° )' [ ( 2 a*2 q2 b*2 q2 ) ] ~ . o  -- ,i + ) 6 ) 2 ~ +  ~ N 2 

sin 2 { xN3 ) 
S 0 \ c* I qal s° AS 

x ~. dN 3, (17) 

Vc*lq3' (c~lq31SoAS) 
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which may be further integrated over N 3 from zero to 
infinity: 

( . y ~ l ( A S ) )  _ v o S O (),c* q3) 2 
2It 14~fl~F Z 

x (18) 
( n S o A S )  

where 
Z--- V/[(aa*ql) 2 + ( fb*q2)  z + (~c*q3)Zl. (18') 

So far we have obtained the average contribution to 
the interference function from the crystals obeying the 
condition ~b _< (h,b), or, equivalently, satisfying 
equations (16). The corresponding contributions arising 
from ~ < (b, rb) [i.e. (.7~,~k)t(AS))] and from b <_ (~,~i,) 
[(.~"~2h~t(AS) )] ate immediately derived by putting 
(aa* ql) 2 and (fib* qz) z, respectively, instead of (Te* q3) z 
in equation (18). Finally, the average interference func- 
tion is 

3 Z 
i=1 [_ ] 

= , (19) 
2 V (ItS A S )  z 

where the total number ~ of the diffracting unit cells 
has been introduced as [see equation (14)] 

v0(U):  v0(U,)(U2)(U,)-  Vo (20) 

This parameter appears to be more significant than 
v 0 inasmuch as it is proportional to the total amount  of 
diffracting matter. Before proceeding to discuss the 
characteristic features of the above line profile, let us 
observe that (for a > 0) 

+ ;  l - e x p ( - a x 2 )  f [ + ;  ] dx  = exp (--a '  x 2) dx  da '  
X 2 

- o o  0 t_ - o o  

= 2 v / (azO.  ( 2 1 )  

Consequently, we have [cf. equations (12) and (21) of 
Allegra et al. (1978)1 

.Sv/It So 1 Peak he ight=  lim (,~ 'hkt(AS))--  2 VZ 
AS--*O 

Full width at half-peak height = WI/2. hkt 

2 . 5 2 4 8 . . . Z  " (22) ] ItS o 

+oe dr 
Integral value = J ( , T h k l ( A S ) )  d A S  = "-- 

- m  V 

As expected, the product of the peak height and the 

full half-peak width is still proportional to J Y / V ,  i.e. 
the integral value (Warren, 1969). It is interesting to 
compare the present result with the interference func- 
tion obtained on the assumption of a Bernoullian 
distribution of crystal sizes [see Allegra et al., 1978, 
equation (19)1. While in the latter case the interference 
function behaves like a Lorentzian curve, i.e. 1/(1 + 
x2), where x = A S  x (constant value for given h,k,l), 
in the present case it behaves as A[1 -- exp ( - -Bx  2)]/x 2. 
Adjusting A and B so that both the total area and the 
half-peak width are identical in the two cases, the two 
functions are compared in Fig. 1, where the Gaussian 
curve y = e x p ( - C x  2) is also reported with the same 
normalization. While the first two profiles show an 
obvious similarity inasmuch as they decrease as l / x  2 
for large x, although with different scale factors, the 
Gaussian curve drops to essentially zero values (i.e. 
less than 1% of the peak height) for x > 2-5. As will 
be quantitatively discussed below, the smaller 'tail ' 
values of the profile obtained with the Gaussian 
compared with the Bernoullian crystal-size distribution 
are related to a lower percentage of small-size crystals 
in the former case. Obviously, a still lower percentage 
of such crystals would be required to obtain a Gaussian 
curve as the resulting line profile; however, it will be 
shown in the next section that this hypothesis appears 
to be physically implausible. 

In the Bernoullian case it was shown that, at least 
for rectangular parallelepiped crystals, a reflection 
characterized by an S vector not coinciding with the 
reciprocal axes x* ,y* ,z*  tends to have a larger width 
than those along the axes [Allegra et al., 1978, 
equations (24)1. This is not generally true for the 
Gaussian size distribution; referring for simplicity to 
the cubic case (i.e. a = fl = y, a* = b* = c* = 1/a, 
cos a* = cos f *  = cos y* = 0), the half-peak width is 
independent of (h,k,l); i.e. [cf. equations (22), (18') 
and (2')1 

2 . 5 2 4 8 . . .  a 
Wv2. hkt -- (23) 

I t  a 

5 

1./I " ' \  
/ \ 

: - \  / ,,. \ \ 

-4 - ~ - - - }  -i 1 z 3 4 ,- 

Fig. 1. Plots of (a) a Lorentzian function A,/ (1 + x2); (5) a 
function of  the type A2[I  - exp (-B2xZ)J/xZ; (c) a Gaussian 
function A3ex p ( -B3x2) .  The coefficients A l and B I are adjusted 
so that for the three cases the integral from --oo to +oo is equal 
to unity and the halt-peak half-width is also unity. 
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(c) Implausibility of  Gaussian size-broadened line 
profiles 

It was pointed out by Stokes & Wilson (1944), 
Bertaut (1949) and Warren (1955) that the size effect 
upon any reflection of a crystalline powder sample may 
be described as being due to the independent diffraction 
of unit-cell columns perpendicular to the diffracting 
planes. Remembering this result, we assume for sim- 
plicity cos~* = cos fl* = cos y* = 0, and consider 00l- 
type reflections. After integration over x* from -½a* 
to +½a* and over y* from -½b* to +½b*, the inter- 
ference function of a column of N 3 unit cells extending 
along c is given by [cf. equations (1) and (3), where 
x* =y* = O,z* = le* + AS] 

,TN,(AS) = a* b* sin2 (zEN3 AS~c*) (24) 
• ( ~ A S I c * ) 2  

The overall interference function is 

./U ~o 
E P(N3)JN3(AS), (25) ('~'°°'(AS)>- (N3> N3=, 

where <N3> is the average number of unit cells within 
the columns along c and, consequently, dU/<N3> is the 
total number of columns, while P(N3) is the probability 
of finding a column containing just N 3 unit cells. 
We will obtain P(N3) with the assumption that 
(,7oot(AS)) is Gaussian, i.e. 

( .7oo,(AS)) = CK exp (--K 2 AS2), (26) 

where C = jU/Vv/z t  [cf., for example, equations (22)]. 
For simplicity we shall make the substitutions 

7~ 
A S = y ;  N 3 = x ;  ~- ; - -~ ;  

1 -- cos 2fl 
P ( N 3 ) = f ( x ) ;  sin2fl - 

2 
,/r" 

a* b* = tr, (27)  
(N3> 

so that, combining equations (25) and (26) and 
changing the sum into an integral, 

co 

2~2y 2 CK exp (--K2y 2) = o f f (x) ( l  -- cos 2~,xy)dx. 
o (28)  

Remembering that f ~ ° f ( x ) d x  = 1, expanding 
f ( x )  on the negative side of the x axis with the assump- 
tion f ( - x )  = f(x) after the substitution cos(2~xy) = 
½[exp(2iqtxy) + exp(--2iv/xy)], equation (28) reduces 
to 

+ c o  

½ f f ( x )  exp (2i~xy) dx 
--OO 

2C 
= 1 - - -  K ~ 2 y  2 exp (-K2y2). (29) 

o" 

The function f ( x )  may now be obtained after a 
Fourier antitransformation, i.e. 

2C +c 
½f(x)  = 6(x) - - -  g ~  3 f y2 exp(_g2y2  _ 2iq/xy) dy, 

~o" -oo 
(30) 

where 6(x) is the Dirac delta function. The integral on 
the right-hand side may be computed by standard 
methods and we finally obtain, remembering equations 
(27) and V -1 = a*b*c*, 

P ( N 3 ) = 2 6 ( N 3 ) + 2 ( N 3 ) ( c , ~ )  z 

] [2/~N3 12-- 1 exp . (31) 
L kc*r] L kc*r] 

In agreement with the starting assumption, the second 
member turns out to be an even function of N3; it may 
be checked that the term following 26(N 3) has a zero 
average value, i.e. its integral o v e r  N 3 from zero to 
infinity is zero. 

Obviously, the above result is physically absurd. In 
fact, even apart from the unphysical 6 function, the next 
term is negative for small N 3 values, becomes zero 
for ~l 3 = c* K/zcV/2, and then becomes positive. As an 
example, for K = l O0/c*, which means (AS2) 1/2 ~_ 
c*/140 [see equation (26)1, this term is negative up to 
Ar 3 = 22, then it reaches its positive maximum for 
N 3 ~_ 40, the negative value for small N 3 being about 
twice as large as the maximum itself. 

There is only one possibility that the above result is 
wrong, namely if the crystal contains holes and/or its 
surface is not convex, all its unit cells being perfectly 
coherent otherwise (Fig. 2). In fact, equation (24) is 
only valid if any column containing N 3 unit cells is 
continuous, i.e. if it is not given by N 3 -- k cells, say, 
then any number of 'empty'  cells, then k cells again 
with the same alignment (see Fig. 2). On the assump- 
tion that we had to deal with such an improbable 
crystal, a Gaussian size-dependent interference function 

Fig. 2. Sketch showing a crystal with a hole (H) and a surface 
concavity (C). A row of unit cells (darker regions) is interrupted 
by the hole. 
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could perhaps be obtained. Incidentally, Warren's 
(1969) formula 

d 2 , ~ S  
N ,  - -  P(N3), 

dN~ 

where . C s  is the total number of pairs of N3th 
neighbouring unit cells within the columns, would also 
fail for a hole-containing crystal (.CSN~ may be 
obtained from a Fourier analysis of the size-broadened 
diffraction profile). 

(d) Statistical distribution of  crystal sizes for  the 
Bernoullian and Gaussian cases 

A conclusion analogous to that drawn by Allegra 
et al. (1978) may be reported here; i.e. if the majority 
of the (perfect) crystals belonging to the diffracting 
sample have a parallelepiped shape and if their 
observed line profiles, after correction for the effect of 
strain, are all similar to that reported in Fig. 1 (curve 
b), their statistical distribution may probably be re- 
duced to equation (13). In such a case, the line profiles 
of all the reflections should be interpreted in terms of 
the three statistical parameters (",fl,7) according to 
the general equation (l 9). 

In view of the peculiar simplicity of the Bernoullian 
and Gaussian crystal-size distributions, we have 
thought it useful to calculate some related statistical 
properties. In particular, we have directed our attention 
to the number and the weight probability distributions 
of the crystals as a function of their volume, as the most 
representative and potentially useful statistics of the 
polycrystalline samples. Our starting point is repre- 
sented by the probability distributions of crystals 
having given edge lengths (N~a,NEb,Nac) in the two 
cases, i.e. 

Ps(x,y,z) = a#7 exp[-- (ax + flY + 7z)] 

PG(X,y,z ) _ 8aft7 I (32) zc 3/2 exp[_(a2x 2 + frye + ~Z2)], 

that are identical to equation (1) of Allegra et al. (1978), 
and equation (13) of the present paper, the symbols B 
and G standing for Bernoullian and Gaussian, and 
(N~,N2,Na) being substituted by the continuous 
variables (x,y,z). Both distributions are normalized 
inasmuch as their integral over x, y and z from zero 
to infinity is unity. For either case we have: 

1 dv V d N -  V P(x,y,z) 

dw WN dv 

dv V dN 

0 I x J(xyz -- N) dx dy dz 

- - -  --¢-- e(x,y,z) 

x ~(xyz - N) dx dy dz, 

(33) 

where: N = N~N2N s is the total number of unit cells for 
the general crystal; V is the unit-cell volume; v = N V  is 
the volume of a crystal; W is the weight per unit cell; 
and N W  is the weight of a crystal; v(v) and w(v) are the 
total number and weight of the crystals with volume < 
v, while v 0 is the total crystal number;/ i(x) is the Dirac 

function. 
It is apparent that dv/dv and dw/dv are the number 

and the total weight, respectively, of the crystals with 
volume comprised between v and v + dr, both divided 
by dr. For simplicity we shall deal in the following 
with the related functions F(N)  = (V/vo)(dv/dv) and 
G(N) = NF(N)  = (V/Wvo)(dw/dv), while a suffix 
B or G will specify whether the Bernoullian or the 
Gaussian case is treated. It is not difficult to see that 
F( N) and G( N)/ ( N )  are the number and weight 
probability densities, respectively, of crystals con- 
taining N unit cells. 

First we need a suitable representation of the J 
function. Introducing the identity 

1[ 
(~(xyz - N) = ~ ~ In (34) 

and adopting the usual Fourier representation for 
fi(x), we obtain 

FB(N ) _ f17 ei.,i. N dx  e_~X xi., 
27rN 

- o e  LO 

that is: 
+¢¢ i f  F . ( B )  - e-/~s lr(io) + l ) l  s din, 

2~N 
- - O O  

where Fdenotes the gamma function, and 

(36) 

s = In (NaflT), (37) 

while ~fl), is ( N )  -~ (Allegra et al., 1978). For all real 
values of s, the above integral converges rather quickly, 
since (Abramowitz & Stegun, 1965, ch. 6) 

7tit) 
Ir(io9 + 1)12- , (38) 

sinh (rim) 

so that a numerical evaluation of equation (36) does 
not pose serious difficulties provided the proper 
argument is added to F(1 + ito), i.e. 

= -- atan - co7, 
n=0 l + n  

(39) 

where y is the Euler-Mascheroni constant. The exten- 
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sion of equation (36)to d-dimensional crystals is 

1 
FB(N ) - 

2nN 

where 

equation (36) reads 

[i~__l (ti] °°.f_ e -i''s [F(ios + 1)] d dw, (40) FB(N)= N-1Q(s) '  
_~ and from the definition G(N)  = N F ( N )  

t i = 1  

(41) 

and tq, a2, ... a i . . .  stand for (a,p,)', ...). The case d = 1 
is trivial, and gives 

F n ( N ) =  ae - ~ .  (42) 

However, equation (40) shows that this case is the most 
critical from the point of view of the convergence. 
Therefore, the above simple solution for d = 1 provides 
a useful check on the numerical accuracy of integration. 

For d = 3, introducing the function Q(s), defined as 
+ c o  

1 
.~ e -i'°~ IF(los + I)1 a dos, (43) Q(s) = ~-~n 

5 o 

I 
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Fig. 3. Logarithmic plots of (N).F(N) and of G(N) vs N/(N) 

for both the (a) Bernoullian and (b) Gaussian crystal-size dis- 
tfibutions. (N) is the average number of unit ceils per crystal; 
F(N) and G(N)/(N) respectively are the number and the 
weight probability distributions of the crystals comprising N 
unit cells (see text). 

(36') 

Gn(N)=  Q(s); [s = ln(N~,fl)')]. (44) 

Both F, (N) / ( . f l ) ' )  = [ F n ( N ) . ( N ) I  and Gn(N ) are 
reported in Fig. 3(a) as functions of the reduced 
variable Nap)' = N / ( N ) .  Since f ~  F ( N ) d N  = 1, and 
.f~ G ( N ) d N  = ( N ) ,  it is apparent that the integrals of 
both functions over the reduced variable are unity. 
At N = 0, F n diverges, whereas G B vanishes with an 
infinite slope. In the complex 09 plane the poles of the 
integrand in equation (43) are o9, -- ni, with integral 
positive n. For negative s (i.e. for Nap), < 1), the 
integral can be converted into a sum of residues. If 
Nap), ~ I (i.e. for s --, --oo), only the pole at to = i can 
be considered. In this limit we obtain therefore 

I- 

GB(N ) : Q In (Nap),) ~ (Nap),) 13(2C 2 - C3) 
L 

- 3 C  2In +½In 2 , (45) 

where C 2 and C 3 correspond to the series development 
of I /F(Z):  

GO 

1 /F(Z )=  Z + ~. C n Z  n, 
2 

as given by Abramowitz & Stegun (1965, ch. 6). In 
particular, C 2 = 0.5772 ... and C 3 = - 0 . 6 5 5 9  ... 
Equation (45) is correct up to terms of order (Nap)') 
In 2 (1~Nap)'). Fn/(ap),) diverges as ½ In 2 ( l /Nap),)  near 
N = 0. In spite of numerous attempts no simple 
asymptotic formula for Q(s) has been found for large 
positive s (i.e. for Nap),  >> '1). However, numerical 
integration suggests that in this limit 

Fn( N)/(ap),) ~ exp (--Nail),). (46) 

As for the Gaussian probability distribution P~(x,y,z) 
[equation (32)], application of the techniques developed 
for the previous case yields 

1 
- -  .J e -i'ln(N°*~v) /~ de). (47) Fc7 (N') 2NTrS/2 

- - 0 0  

Shifting the integration path to the horizontal line 
Im(os) = --~, we easily obtain 

1 

FG(N ) - NT~/2 (N°flY) -1/2 
+oo 

x f I'( ios + 1) dos, (48) 
- - 0 0  

which can also be written 

2 
Fo(N) = N~/-------- ~ (No~y)-l/2 Q[2 In (N~py)J. (49) 



G. ALLEGRA AND G. RONCA 1013 

From equation (49) we immediately obtain the distribu- 
tion function G~(N): 

G~(N) = NFc(N) .  (50) 

In Fig. 3(b), Fo/(,tfl)'zr 3/2) = ( F t . ( N ) )  and G c are 
reported as functions of the reduced variable Naflyz~ 3/2 = 
N / ( N ) .  Asymptotic expressions derived from equation 
(45) and valid at small N (i.e. Nttfl7 ,~ 1) are 

G o ( N ) ~ - - ~  (N,,fly) 3/z 3(2C 2 -  C3) 

- 6C 2 In + 2 In z ; (51) 

FG(N) _ G~(N)/(N.p~,). (52) 
(.,£~,) 

As for the Bernoullian distribution, no simple 
asymptotic formulas valid for large N have been ob- 
tained. However, if the conjectured expression (46) is 
correct, we obtain 

2 
G~(N) ~ - ~  (Nafly) 3/z exp [-(Nt,fl)')z], (53) 

and 
2 

Fc(N)/(aflY) ~ -~z  (N'~flY)'/2 exp [--(Nafly)2] (54) 

at (N~tfly) >> 1. 

Concluding remarks 

It is sometimes observed that the Cauchy distribution 
y = A / ( I  + K2AS  z) produces too high values in the tail 
regions compared with experimental size-broadened 
line profiles, contrary to the Gaussian distribution y = 
A' e x p ( - K ' 2 A S  2) that vanishes too quickly (see, for 
example, Hall, Veeraraghavan, Rubin and Winchell, 
1977). 

We have proved that the Gaussian distribution 
cannot be produced by any crystalline powder sample, 

G(N)(x~ 1} 

o 

Fig. 4. Plot of G(N) vs N/(N) for both the Bernoullian (Gn) and 
Gaussian (G~) distributions, showing that in the former case 
there is a larger weight fraction crystallizing below the average 
size N/(N) = 1 (cf. Fig. 3). 

at least if the (otherwise perfect) crystals neither contain 
holes nor have concave surfaces. In a previous paper 
(Allegra et al., 1978) we showed that a sample of 
Bernoullian crystals [probability of thickness d along a 
given direction = C~ exp(-C2d)]  gives Cauchy line 
profiles. In this paper, investigation of the diffracted 
intensity by a Gaussian sample {probability of thick- 
ness d along a given direction = C~ exp [ -exp  (C2 d2)]} 
leads to an interference function of the type y - 
All  - exp( -BASZ)] /AS  2, which is somehow inter- 
mediate between the C auchy and the Gaussian ex- 
tremes (see Fig. 1). Consequently, the Gaussian crystal- 
size distribution may probably be assumed to be a 
better model for many real samples - the more so 
because it may be associated with a relatively simple 
model of crystal growth. However, it should be stressed 
that the line profiles for both the Bernoullian and the 
Gaussian crystal-size distributions tend to decrease as 
1~AS 2 for a large reciprocal distance AS from the 
maximum. As expected from the calculated line pro- 
files, the results reported in Figs. 3 and 4 show that 
there is a larger proportion of small crystals in the 
Bernoullian than in the Gaussian sample (the respective 
weight fractions of crystals having a volume smaller 
than the average are about 6 and 18%, as calculated 
from Fig. 4). Our results also show that the probability 
density F ( N )  tends to infinity for N --, 0 in the Bernoul- 
lian case, contrary to the Gaussian (remember that N 
is proportional to the crystal volume), which also 
appears to favour the Gaussian hypothesis. 

Finally, we wish to point out that the exact math- 
ematical expression [see equation (11)l of the inter- 
ference function for a collection of identical paral- 
lelepiped crystals (provided their size exceeds some 
lower limit) may allow the average interference function 
for powder samples obeying a variety of size statistics 
to be obtained. It was only because of the peculiar 
simplicity of the Bernoullian statistics that one of us 
was able to obtain the corresponding interference 
function without making use of equation (11) (Allegra 
et aL, 1978). 

This work was financed by a contract granted by 
Montedison SpA. 
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